### Table of Contents

## Generalized pseudo-effect algebras

Abbreviation: **GPEAlg**

### Definition

A \emph{generalized pseudo-effect algebra} is a generalized separation algebra that is

\emph{postive}: $x\cdot y=e$ implies $x=e=y$.

##### Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be generalized pseudo-effect algebra. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(e)=e$ and if $x\cdot y\ne *$ then $h(x \cdot y)=h(x) \cdot h(y)$.

### Examples

Example 1:

### Basic results

### Properties

### Finite members

$\begin{array}{lr}

f(1)= &1\\ f(2)= &1\\ f(3)= &2\\ f(4)= &5\\ f(5)= &13\\ f(6)= &42\\ f(7)= &171\\ f(8)= &\\ f(9)= &\\ f(10)= &\\

\end{array}$