### Table of Contents

## Ockham algebras

Abbreviation: **OckA**

### Definition

An \emph{Ockham algebra} is a structure $\mathbf{A}=\langle A,\vee ,0,\wedge ,1,'\rangle $ such that

$\langle A,\vee ,0,\wedge ,1\rangle $ is a bounded distributive lattice

$'$ is a dual endomorphism: $(x\wedge y)' =x'\vee y'$, $ (x\vee y)' =x'\wedge y'$, $ 0'=1$, $1'=0$

##### Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be Ockham algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:

$h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(x')=h(x)'$, $h(0)=0$, $h(1)=1$

### Examples

Example 1:

### Basic results

### Properties

### Finite members

$\begin{array}{lr}
f(1)= &1

f(2)= &1

f(3)= &2

f(4)= &

f(5)= &

f(6)= &

f(7)= &

f(8)= &

f(9)= &

f(10)= &

\end{array}$

### Subclasses

### Superclasses

### References

^{1)}\end{document}
%</pre>