### Table of Contents

## Stone algebras

Abbreviation: **StAlg**

### Definition

A \emph{Stone algebra} is a distributive p-algebra $\mathbf{L}=\langle L,\vee ,0,\wedge ,1,^*\rangle $ such that

$(x^*)^*\vee x^* =1$, $0^*=1$

##### Morphisms

Let $\mathbf{L}$ and $\mathbf{M}$ be Stone algebras. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a homomorphism:

$h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(0)=0 $, $h(1)=1$, $h(x^*)=h(x)^*$

### Examples

Example 1:

### Basic results

### Properties

### Finite members

$\begin{array}{lr}
f(1)= &1

f(2)= &1

f(3)= &1

f(4)= &2

f(5)= &2

f(6)= &4

f(7)= &5

f(8)= &10

f(9)= &16

f(10)= &28

\end{array}$